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A Discussion of Rotating Wave
Fields for Microwave Applications

Jose E. Velazco, Member, IEEE, and Peter H. Ceperley

Abstract—Traveling wave and standing wave fields are central
to microwave applications. This paper discusses a third category
of fields: “rotating waves” which, while ocassionally utilized in
the past, are not commonly used or understood. Rotating waves
are composed of a particular linear combination of standing
waves, but have field profiles more similar to traveling waves. A
rotating wave can be pictured as a frozen field rotating in space.
An analysis is presented of rotating waves in cylindrical cavity
resonators. The TM L10 rotating mode for a cylindrical resonator
is discussed in some detail.

I. INTRODUCTION

cIRCULARLY polarized electromagnetic fields have been

utilized in various applications, for example: circularly
polarized antennas [1], the gyratron [2], the gyrocon [3],
the magnicon [4], [5], a cyclotron converter for microwave
power to direct current [4], and a self-excited microwave
oscillator [4]. The gyrocon and magnicon, developed in the
former Soviet Union by Budker and Karlirner, respectively,

use circularly polarized fields to achieve spiraling trajectories
(beam scanning) in electron beams for the generation of
very high microwave power. Fig. 1 shows a schematic of
the magnicon, in which three rotating mode cavities are
utilized. The first two cavities modulate the beam transversely.
The third cavity extracts energy from the modulated beam
converting it into several megawatts of RF output power.

In this paper, we use the term “rotating waves” to describe a
general class of circularly polarized electromagnetic fields, in
parallel to the terms “standing waves” and “traveling waves.”
We start by deriving the basic equations and discussing the
general properties for rotating waves. Power, energy, and
angular momentum of rotating modes are then derived. The
equations for rotating electromagnetic fields in cylindrical
resonators are presented. Finally, we end with a more de-
tailed discussion of the TM110 rotating mode in a cylindrical
resonator, which has particular appeal for many microwave
applications.
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Fig. 1. Magnicon schematic.

II. RELATIONSHIPBETWEEN ROTATING
WAVES AND STANDINGWAVES

We start with a standing wave mode in a cylindrical cavity.
For the sake of illustration, we initially consider only the z
component of the electric field for a TM mode cavity of radius
a and length 1.The complete set of electric and magnetic field
equations will be discussed in Section V. For the z component

of the electric field, the field representations E$l) (r, d, z, t)

and E$2) (r, #, z, t) of two identical (but shifted in the @
direction), mathematically independent, degenerate standing

waves of indices m, n, and p (TM~~P), are given by [8]

JW(r, (b, 2, tz ) = EoJm(kcr)
. cos mq$ cos kzz cos wt

E(2) (?-, q$, 2’, t) = EoJm(t?c7’)z

. sin m~ cos k%zcos (wt – 8)

where m = 0,1, 2,3,... , Jm (kCr) is an mth-order
function of the first kind,

w = C(k: + k:)l/2

(1)

Bessel

(2)

is the angular frequency, c = (we) – 1i2 is the speed of light,

kC = umm/a is the radial wave number, Umn is the nth root
of Jm (u) = O,k, = pr/1 is the z directed wave number,
and 6 is an arbitrary temporal phase shift between the two
waves. The index n indicates the number of nodes (zeros) in
the radial direction, and m gives the azimuthal periodicity of
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the wave. The last index p gives the periodicity of the wave in
the z direction. For m = O,sin rn,~ is zero everywhere making

the E$z) (r-, ~, z, t) mode zero. Thus, for m = O, only the

1# (r, d, 2, t) mode exists. It is also important that the index

m is an integer so that the field at # = 21r will smoothly

blend with that at # = O.
(1) andLinear combinations of the standing wave modes Ez

E(2) for m > 1 can create rotating modes [6], [7]. Forz —
instance, adding Ez‘1) and -E$2) and setting 6 = 7r/2 yields
a pure rotating mode

E.(r, ~, z, t) = EOJn(kCr) cos Iiz,z cos (d – mq$),

m=0,1,2,3. ..c (3)

Subtracting ~$1)
~d EJ2) .

m (1) also results in rotating

waves which can be expressed by (3) considering now m =

–l, –2, –3... (i.e., the m in (3) equals –m of (1) when we

subtract). Thus, in either case (adding or subtracting), (3) rep-

resents rotating modes for m = . . . – 3,–2,–1,0, 1,2, 3... .

A mode with positive m value will rotate counterclockwise

(positive @ direction), while its degenerate counterpart of
equal magnitude but negative m value will rotate clockwise
(negative @ direction). An added benefit of (3) is that it

assigns only one mode to each combination of m and n, thus
eliminating the need for the somewhat odd, doubly degenerate
modes for m 2 1 as in (1). Equation (3) can also be expressed

in complex form as

‘~(r, d, ~, t) = l?o~m(k.r) cos k,ze~(’’’-m~). (4)

Equations (3) and (4) represent a pure rotating wave. The
cos (d – m~) term in (3) is similar to a cos (d – kz) term
in a traveling wave, with the only difference being that in

this case the waves are traveling in the ~ direction, around
in circles. They appear as traveling waves chasing their tails.
Fig. 2 shows the z electric wave field in the TM520 mode.

One can easily see the periodicity in the # direction, m = 5
in this case, and the number of zeros in the radial direction,
n = 2. The snapshot of a standing wave for this mode would

not differ from the one of a rotating wave. It is the dynamics of

the wave crests, as indicated by the arrows on the figure, that
distinguish these as rotating waves. Standing waves appear to
vibrate between fixed nodal lines and continually change their
shape, i.e., have time dependence. A rotating wave, on the

other hand, has a constant but moving field profile, similar to
that of a traveling wave. Nevertheless, rotating waves do have
discrete resonant frequencies with integer indices [m, n, and p

in (2)] similar to that of standing waves. Thus, rotating waves
have properties of both standing and traveling waves.

In order to calculate the velocity with which this wave
travels in the 4 direction, we need to follow a feature, such as
a node or a maximum, as the wave propagates. Such a feature
is defined by a particular value G of the argument of the last
cos in (3) or value of the argument of the exponential of (4),
i.e., C = wt – m~ = O,27r, 47r, etc., for the wave peaks, or
7r/2, 3T/2, etc., for the nodes, and n, 37r, etc., for the valleys.
In general, for any particular feature

wt–m4=C (5)

Fig. 2. Surface plot of E. in rotating TM520 mode.

where C is a constant. After applying derivatives to (5), we

can obtain

mdq$=wdt (6)

which can be rearranged to yield

dq$ W

x=;”
(7)

This expression indicates that the angular velocity of the
rotating wave w,Ot ~ dq5/dt equals the RF angular frequency

w divided by the azimuthal index m. For example, for m = 4,
the wave would be rotating at an angular velocity equal to a
quarter of the RF angular frequency, wrot = w/4. This is (of

special importance in high-frequency microwave applications.
In devices like the magnicon, in order to obtain synchro-
nism between fields and particles, the cyclotron frequency
of the electrons Q is matched to the rotating frequency (of
the cavities’ fields, i.e., flc = 2w,0t for the input cavities,
Q = w,.~ for the output cavity. The cyclotron frequency
is directly dependent on the axial magnetic field El. applied
on the particles, flc = eB. /mO [9]. Here e and mo are the

electron charge and mass, respectively. For high-frequency
applications, very strong magnetic field systems would be
necessary, which besides becoming large and expensive, could
lead to potential problems such as overheating or beam pinclh-
off, among others. For a higher order mode cavity (Im I > 1),
the rotating frequency of the fields will be smaller than w
by a factor of I/m, hence relaxing the need for a strong
axial magnetic field. Other potential applications may he
encountered that also utilize the fact that while the cavity is
resonating at w, its fields are rotating at w/m.

III. ENERGY, POWER, AND ANGULAR

MOMENTUM IN ROTATING WAVES

In an electromagnetic rotating wave resonance, the field
components rotate in the ~ direction. Moreover, the electric
and magnetic fields, whose time and @dependence are of the
form e~(ut–md), are “in phase” both in time and in position.
This will be explained in more detail in Section V-A. This
results in there being a @ directed time averaged Poynting
vector Pd produced by these fields and given by
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where 1? and H are the complex representation of the electric
and magnetic field components transverse to the direction of
motion ~.

A characteristic parameter of rotational motion is the angu-
lar momentum L,. The z directed angul~ momentum density
lZ equals the cylindrical radius r times the linear momentum
density P#/c2 [10]–[12], where c is the free-space phase
velocity of the electromagnetic radiation. If we integrate lZ

over the volume of the resonator, we obtain an expression for
the angular momentum L, as follows:

L.=;
/

~ Re(E x H*)drdV.
~2

The Maxwell equation jwE = c2pV x H yields

L,=–p
/

~Re[j((V x H) x H*)4]rdV.
w V2

(8)

Substituting specific components of the vectors in cylindrical

coordinates, we have

‘=-:&Re’{[:W-:%l
Utilizing the fact that the 4 dependence of the fields is of the
form e-~md, we have for (9)

Lz=~
1[ 1~mlH12+~Re(jV(rH@) . H*) dV. (10)

Wv

Replacing UB = (,u/4) .fVIHI 2 dV for the magnetic energy
[13] and expanding the term on the right, we have

(--)1–j VH* rH4 dV (11)

=0

where the foremost right expression is zero from the Maxwell
equation LLV. H = O. Now applying the divergence theorem
on the expression at the center, we obtain

(.ILz = 2~UB + &Re j
)

rH+H* . dS . (12)
s

=0

The expression on the right is zero by the fact that H at the
resonator wall is perpendicular to the wall surface vector S.

Finally, observing that the total magnetic energy UB com-
prises half the total field energy U, we obtain a final expression
for the angular momentum

mU
Lz=— (13)

w“

It is interesting to note that while the fields rotate at
w,ot = w/m, i.e., rotate slower for larger m values, the angular
momentum Lz, which is proportional to m, increases for larger
m values.

—
m

n

-i-

2
3
4—

TABLE I
THE nth ROOTSOF ~~, (u )

o

2.405
5.520
8.654
11.792

1

3.832
7.016
10.173
13.324

2

5.136
8.417
11.620
14.796

3

6.380
9.761

13.015
16.223

TABLE 11
THE nth ROOTS OF J&(u)

m o 1 2 3
n

1 3.832 I 1,841 3.054 4.201
2
3
4—

7.016
10.173
13.324

5.331 6.706 8.015
8.536 9.969 11.346
11.706 13.170 14.587

In the output cavity of the magnicon, most of the gyrating

beam energy is given to the cavity fields which result in an
associated loss in the electrons’ momentum. Clearly, by the
conservation of momentum, the fields must gain an equivalent
amount (LZ must increase accordingly) which in turn translates
into the enhancement of the fields energy U.

IV. RESONANT FREQUENCIES OF ROTATING WAVES

From the derivations in Section II, we see that the resonant

frequencies of the rotating modes are same as the resonant
frequencies of standing waves modes [14], given in (2),

Wren, = c[k: + k:]’@. (14)

Substituting the expression for k. and kz, we obtain

(15)

Similarly, the resonant frequencies for the TE~~P mode are
given by

wmnp=c@)2+(?)2(16)

where u~n is the nth root of the ~~,(u) = dJ~(u)/du = O.
Tables I and II show the nth roots of Jm (u) and JA (u), the
mth- order Bessel functions of the first kind, for different
values of m and n for the various rotating modes of waves
in a cylindrical guide. The frequency is a function of the
index numbers n and p, and the absolute value of m. For
Iml 21, the +m and -m modes are degenerate, as mentioned
in Section II.

V. ROTATING WAVE FIELDS IN CYLINDRICAL RESONATORS

The standard equations for the electromagnetic standing

wave modes TMmnP in cylindrical resonators are [8]

Ez(r, 4, z,t) = EoJ~(kCr) cos kzz

. cos (m#) cos wt (17)
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‘O(qJA(~cr)swE.(r, q$,z,t) = – ~ ~

. cos m~ cos wt (18)

. sin m~ cos wt (19)

. sin mq$ sin wt (20)

w~Eo ,
H~(r, ~,z, t) = ~ J~(kCr) cos kC.zcos m~ sin wt (21)

c

Ifz(r, #,z, t) =0. (22)

By shifting phases (both in the angle ~ and in time), and

adding these as we did in Section II, we find the complete elec-

tromagnetic fields for the rotating wave modes in a TMm.P
cylindrical resonato~

E=(r, ~, Z, t) = EoJ~(kcr) cos k# cos (tit – m~) (23)

E,(r, ~, z,t) = – ~ (p~)J&(kCr) sin kZz
c

. cos (d – m~) (24)

. sin (wt – m~) (25)

H,(r, q5,z, t) = *(;)Jm(~cr)cos~z~
c

. cos (cd– mq5) (26)

WCEO ,
H~(r, ~, z,t) = ~—J~(lcCr) cos kzz sin (wt – m~) (27)

c

Hz(r, @,z, t) =0. (28)

where m = . ..— 3,–2, –1,0,1,2,3, ..., and .l~ ~

(d/dkCr)[Jm(kCr)] = [(m/kCr)J~(kcr) -J~+l(kcr)] [15]. A

discussion of the characteristics of and the difference between
the standing wave and rotating wave representation of these
fields is presented below for the TM1lo mode case.

A. TM110 Cylindrical Resonator Case

For a TM1lo mode cylindrical cavity, the standing wave
representation (17)–(22) reduces to

&(~, d, t) = EoJI(kT) Cos # COS Wt (29)

WCEO
&(~> 4’>~) = ~$r—Jl(kCr) sin 4 sin wt (30)

WCEO ,
%(r, 4, t) = kc— J1 (kCr) cos @sin wt (31)

and the rotating representation (23)–(28) to

Ez(r, ~, t) = EoJl(kcr) cos (@t – ~) (32)

~r(r, d, t) = ~gr=Jl (kCr) cos (wt – ~) (33)

WCEO ,
~d(~> 4, ~) = kc—Jl (k.r) sin (wt – d) (34)

where J{ = [(J1(kCr)/kCr) – Jz(kcr)]. The plots of J~ are
shown in Fig. 3 for m = O, 1,2.
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Fig. 3. Bessel function plots.

For standing waves, the fields (29)–(3 1) cycle between being
totally magnetic and being totally electric; so that when the
magnetic field is maximum, the electric field is zero, and vice
versa. The magnetic lines wrap around in closed curves in
both halves of the cavity, reinforcing each other at the center
as shown in Fig. 4(a). The electric field lines go perpendicular
(to the plane of the magnetic field lines) through the center of

the magnetic field curves where the magnetic field is minimum.
For rotating w~aves (32)–(34), the electric and magnetic fields
are both always present (instead of cycling), and the field

patterms of each are unchanging, but rotating in the @direction.
The profile of the electric field lines of a rotating wave is
the same as that in the standing wave case. Also, the profile
of the magnetic field lines is the same as in the standing
wave case. However, the electric and magnetic field profiles
have a different relative orientation in the rotating wave case
as compared to the standing wave case. As shown in Fig.
4(b), the electric field profile is rotated by 90° relative to the

magnetic field profile when compared to the standing wave

case shown in Fig. 4(a). Considering fields off the resonator

axis (at some radial coordinate value r), in the standing wa~’e
case, the electric field peaks at a different # coordinate value
than the magnetic field. In the rotating wave case, they peak at
the same # coordinate value and same time, creating a strong
circulating Poynting vector P+ = (1/2) Re (Ez x H;) with
the associated angular momentum discussed in Section 111.
In contrast, in the standing wave case, the Poynting vector
averaged over an RF cycle is everywhere zero. Fig. 5(a) shows
a snapshot surface plot for the rotating electric field Ez of

the TM1 IO cavity. From (32) and (33) we see that the radial
magnetic field component Ifr is proportional to Ez, so its

snapshot surface plot would look the same as Fig. 5(a). Note
also that, off-axis, the fields Ez and H, being proportional to
each other, peak simultaneously (in time and position) as they
rotate, creating a rotating Poynting vector as stated above.
As is well known, in a cavity at resonance (in a standing

wave mode), the stored energy U is constant and oscillates
between electric and magnetic forms [16]. That is to say,
because the electric and magnetic fields in the standing wave
case are 90° out of phase, the electric energy i?E cc IE 12

peaks when the magnetic energy UH cx IH12 is zero, and
vice versa.
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Fig. 4, (a) Electromagnetic field lines for standing wave TM I lo mode in a
cyhndrlcal resonator, (b) Electromagnetic field lines for rotating wave ThI ~~~

(a)

/

(b)

Fig. 5. (a) Surface plot of electric field EZ for rotating TM110 mode cavity.
A similar plot of H, will have exactly the same shape. (b) Surface plot of total

H field ( H; + H:) for a rotating TM I 10 mode in a cylindrical resonator.
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///[

2
WCEO
~J1(k.r) Cos (4 – Wt)

2000 ~

2
WCEO ,

+ 1~J1 (kCr) sin (4 – wt) T dr d+ dz. (36)
c

As expected, (35) and (36) give the same answer [17]

UE = UH = ~nea21J/(ull)E~. (37)

Thus. in the rotating wave case, the electric and magnetic
stored energies are identical to each other, and are constant or
time independent.

In both standing wave and rotating wave modes, the co-

efficient of the electric field ,!70 can be found from (37).
Substituting U = F’inQ/w [18], we have

In a rotating wave mode, the fields rotate in the O direction.

keeping their amplitude constant as they travel. Therefore, the
total electric energy and the magnetic energy will both be
constant in time and each equal to half the total stored energy:

uLJ(t)= u~(t)= ;U(t).
To demonstrate the previous statement, we calculate the elec-
tric stored energy of a TM110 rotating wave resonator as
follows:

u,Lj= 1;;lEz12dV

12na&

‘Ill5000
\EoJ1(kCr) cos (@-wt)\2r dr do dz(35)

and the magnetic stored energy

(38)

where Q is the quality factor of the cavity and Pin is the power

fed to the cavity. So by (32), the electric field magnitude at any
r value is -EO.J1(kCr), and the maximum value in the cavity
occurs at kcr = 1.841 and equals 0.582E0. The magnetic field

magnitude then is given by (33) and (34). Thus, for a given

cavity, (38) allows us to determine the peak (and ever-present
but moving) electric and magnetic field magnitudes inside of
the cavity.

We calculate the resonant frequency of the TMIIO modes by
examining the boundary conditions. The boundary conditions
for the electric field component require that Ez = O for

r = a. Table I yields for m = n = 1, U1l = 3.832 (i.e.,

for kcr = 3.832, J1(kCr) = O as shown in Fig. 3). Equation
(14) gives the resonant frequency

Who = C? = 3.832:.
a

(39)
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Fig. 6. Snapshot of an electron beam going through a TM I lo cavity,

Equation (7) indicates that the fields within this cavity will

rotate at the angular velocity of wrOt = dqb/dt = w. For
example, for a = 18 cm, the resonant frequency of the cavity
would be w = 6.3.109 radls (~ % 1 GHz) and the rotating

angular velocity of the wave would also be d~/dt = w =

6.3.109 rad/s.

The magnetic field If = H: + @ for the TMIIO

cavity, is shown in Fig. 5(b). It is this rotating magnetic
field that is commonly utilized in the transverse modulation
of particle beams (gyrocon, magnicon). Near the axis (kcr <<
1), J~(kc7’) % kCr-/2 and J2(kCr-) x ((kCr-)2/8). Letting
Hz = H. cos $ – H4 sin + and Hv = H. sin ~+H4 cos #, the

magnetic field in rectangular coordinates can be expressed as

‘z= & ‘Os‘t “ =& ‘inwt”
At any point on-axis, the magnetic vector H is constant in

amplitude, but rotates in the ~ direction at the RF angu-
lar frequency w. The particles entering the cavity will then
encounter this constant amplitude magnetic field rotating in
the # direction. Because the H field is constant, all particles

(of velocity v) will be deflected by the same constant force

e~(v x H); however, because the H field rotates in time,

particles entering the cavity at different times will be deflected
in different directions. Thus, upon exiting the cavity, the
particles form a spiraling beam shown in Fig. 6.

VI. CONCLUSIONS

Rotating waves are neither standing waves nor traveling
waves but have the field profile similar to a ~ directed traveling
wave and the discrete resonant frequencies of standing waves.

An analysis of electromagnetic rotating waves, including their

field dependence on standing waves, frequencies, energy, and
power, has been presented in this paper for cylindrical cavities.
The concepts of angular momentum, resonant frequencies,

and electromagnetic fields in different types of rotating wave
modes have been studied. A number of interesting and unique
properties of rotating waves were discussed, including their
constant electric and magnetic field energies. We mentioned
a range of current uses for rotating waves in this pape~
however, it is hoped that rotating electromagnetic waves, once
better understood, may be utilized in an even wider range of
applications.
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